
Queue API



Goals and direction

1. Reset / reload single queue for page-pool changes
2. Reset / reload for AF_XDP ?
3. Use the queue-by-queue reset model for all config changes
4. Store configuration in the core, to allow per-queue config
5. On-demand creation and deletion of queues

Challenges:
● no support for graceful shutdown in general (FW limitations etc.)
● people are too precious about their drivers :)



Object lifetime model

Already have:
● objects can be attached to a netlink socket
● when socket gets closed objects are auto-destroyed

Potential improvements:
● better API for generic object store rather than per-family priv store
● tracking dependencies (n-tuple rule -> RSS context -> queues)

○ for ordered removal and error checking in the core
● introspection of who is holding which object
● object passing (w/ priv delegation)?



Zero Copy Rx with io_uring
David Wei, Pavel Begunkov



Network card

User 
memory

RX ring

DMA

Userspace



Network card

Kernel / Network stack

User 
memory

RX ring

DMA

Userspace

{off, len} has data



Network card

Kernel / Network stack

User 
memory

RX ring

DMA

Userspace

Refill ring



● Page pool memory providers
○ Page pool API, seamless for drivers
○ io_uring callback pulls buffers from the refill ring …
○ … or from a slow path stash

● Pages / buffers are wrapped into struct net_iovs
○ Turns into netmem_ref for the net stack / drivers
○ Refcounts buffers / helps controlling lifetime
○ Doesn’t need backing pages

● Copy fallback
○ skb linear part, mixing with kernel pages, etc.



● Simplifying user API

● Completions returned in main Completion Queue
○ No double layered completions
○ No separate ring to inspect
○ Requires extended 32 byte CQEs, IORING_SETUP_CQE32 

● No extra steps for intermediate buffer registration
○ Done in a single syscall while registering an ifq object.

● Reworked completion and refill entry layouts
○ No duplication, e.g. socket and queue id
○ More flexible token scheme, will help with future extensions



Zero copy performance

● Thrift RPC benchmark
● Echo request / response, 64 KB payload
● Single server worker thread

○ Pinned to same CPU as net rx softirq
● CPU bound, 24 client connections over 6 client threads
● Broadcom Thor NIC, 100/4 = 25 Gbps server bandwidth



epoll zerocopy receive

20.6 Kqps 22.8 Kqps

10.08 Gbps 11.14 Gbps

~10% difference, ~14% of copy overhead
High user space overhead



● Patchset merged upstream
○ …but buggy in testing

● A delicate dance between driver + FW
○ Must be careful with FW synced data structures

● Need to be able to quiesce a queue
○ FW vnic_update()

● Requires HW ntuple filtering + flow steering

bnxt queue API implementation



● Broadcom Thor has 128 queues
● 1:1:1 HW queue:io_uring:thread association
● So CPUs with > 128 cores = 😥
● Need to have multiple threads share something

Multiple threads per queue



Zero copy and TLS

● kTLS negates the benefit of zero copy
● Plaintext + ZC:

○ NIC → User
○ 1 DMA trip over memory bus

● TLS + ZC:
○ NIC → User → Decrypt + Copy → User
○ Now 2 trips

● kTLS:
○ NIC → Kernel → Decrypt + Copy → User
○ Also 2 trips over memory bus, 1 DMA + 1 copy

● PSP?
○ NIC → HW PSP Offload → User
○ Back to 1 trip



● Use case: block storage service, 4 KB page writes
● Want O_DIRECT to work
● Everything sent as RPC
● Opaque 4 KB data somewhere inside RPC frame
● RPC frame segmented into MTU sized packets and sent
● Server zero copy puts each packet into a separate page
● For O_DIRECT each iovec must be properly aligned
● Hard to guarantee this with HW HDS

Userspace RPC alignment



● Added packet forwarding
● Added NAPI and multi-queue
● Want to be a test device

○ For io_uring zero copy / devmem TCP
○ Increased selftest coverage of netdev core features
○ What else…?

● TODO:
○ Flow steering?
○ RSS?
○ Page pool?

netdevsim as test device



Latest branch, waiting for net_iov
https://github.com/isilence/linux.git zcrx/v5-conf

Outdated RFC
https://lore.kernel.org/io-uring/20240312214430.2923019-1-dw@davidwei.uk/

Benchmarking
https://github.com/spikeh/netbench/tree/zcrx/next

io_uring mailing
io-uring at vger.kernel.org

Or email us directly for any questions:
Pavel Begunkov <asml.silence@gmail.com>
David Wei <dw@davidwei.uk>

https://github.com/isilence/linux.git
https://lore.kernel.org/io-uring/20240312214430.2923019-1-dw@davidwei.uk/
https://github.com/spikeh/netbench/tree/zcrx/next
mailto:asml.silence@gmail.com
mailto:dw@davidwei.uk

